Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38183210

RESUMO

The neuronal composition of homologous brain regions in different primates is important for understanding their processing capacities. Primary visual cortex (V1) has been widely studied in different members of the catarrhines. Neuronal density is considered to be central in defining the structure-function relationship. In human, there are large variations in the reported neuronal density from prior studies. We found the neuronal density in human V1 was 79,000 neurons/mm3, which is 35% of the neuronal density previously determined in macaque V1. Laminar density was proportionally similar between human and macaque. In V1, the ocular dominance column (ODC) contains the circuits for the emergence of orientation preference and spatial processing of a point image in many mammalian species. Analysis of the total neurons in an ODC and of the full number of neurons in macular vision (the central 15°) indicates that humans have 1.3× more neurons than macaques even though the density of neurons in macaque is 3× the density in human V1. We propose that the number of neurons in a functional processing unit rather than the number of neurons under a mm2 of cortex is more appropriate for cortical comparisons across species.


Assuntos
Macaca , Córtex Visual , Animais , Humanos , Córtex Visual/fisiologia , Neurônios/fisiologia , Visão Ocular , Vias Visuais/fisiologia , Mamíferos
2.
eNeuro ; 10(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36858825

RESUMO

There is substantial variation in the mean and variance of light levels (luminance and contrast) in natural visual scenes. Retinal ganglion cells maintain their sensitivity despite this variation using two adaptive mechanisms, which control how responses depend on luminance and on contrast. However, the nature of each mechanism and their interactions downstream of the retina are unknown. We recorded neurons in the magnocellular and parvocellular layers of the lateral geniculate nucleus (LGN) in anesthetized adult male macaques and characterized how their responses adapt to changes in contrast and luminance. As contrast increases, neurons in the magnocellular layers maintain sensitivity to high temporal frequency stimuli but attenuate sensitivity to low-temporal frequency stimuli. Neurons in the parvocellular layers do not adapt to changes in contrast. As luminance increases, both magnocellular and parvocellular cells increase their sensitivity to high-temporal frequency stimuli. Adaptation to luminance is independent of adaptation to contrast, as previously reported for LGN neurons in the cat. Our results are similar to those previously reported for macaque retinal ganglion cells, suggesting that adaptation to luminance and contrast result from two independent mechanisms that are retinal in origin.


Assuntos
Corpos Geniculados , Visão Ocular , Animais , Masculino , Corpos Geniculados/fisiologia , Células Ganglionares da Retina/fisiologia , Macaca , Retina , Estimulação Luminosa/métodos , Vias Visuais/fisiologia
3.
Brain Struct Funct ; 225(3): 1135-1152, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32266458

RESUMO

The Kv3.1b potassium channel subunit, which facilitates the fast-spiking phenotype characteristic of parvalbumin (PV)-expressing inhibitory interneurons, is also expressed by subpopulations of excitatory neurons in macaque cortex. We have previously shown that V1 neurons expressing Kv3.1b but not PV or GABA were largely concentrated within layers 4Cα and 4B of V1, suggesting laminar or pathway specificity. In the current study, the distribution and pattern of co-immunoreactivity of GABA, PV, and Kv3.1b across layers in extrastriate cortical areas V2 and MT of the macaque monkey were measured using the same triple immunofluorescence labeling, confocal microscopy, and partially automated cell-counting strategies used in V1. For comparison, densities of the overall cell and neuronal populations were also measured for each layer of V2 and MT using tissue sections immunofluorescence labeled for the pan-neuronal marker NeuN. GABAergic neurons accounted for 14% of the total neuronal population in V2 and 25% in MT. Neurons expressing Kv3.1b but neither GABA nor PV were present in both areas. This subpopulation was most prevalent in the lowest subcompartment of layer 3, comprising 5% of the total neuronal population in layer 3C of both areas, and 41% and 36% of all Kv3.1b+ neurons in this layer in V2 and MT, respectively. The prevalence and laminar distribution of this subpopulation were remarkably consistent between V2 and MT and showed a striking similarity to the patterns observed previously in V1, suggesting a common contribution to the cortical circuit across areas.


Assuntos
Neurônios GABAérgicos/metabolismo , Neurônios/metabolismo , Canais de Potássio Shaw/análise , Córtex Visual/metabolismo , Animais , Contagem de Células , Feminino , Macaca fascicularis , Macaca nemestrina , Masculino , Parvalbuminas/análise , Vias Visuais/metabolismo , Ácido gama-Aminobutírico/análise
4.
J Neurosci ; 40(12): 2445-2457, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32041896

RESUMO

Layer 6 appears to perform a very important role in the function of macaque primary visual cortex, V1, but not enough is understood about the functional characteristics of neurons in the layer 6 population. It is unclear to what extent the population is homogeneous with respect to their visual properties or if one can identify distinct subpopulations. Here we performed a cluster analysis based on measurements of the responses of single neurons in layer 6 of primary visual cortex in male macaque monkeys (Macaca fascicularis) to achromatic grating stimuli that varied in orientation, direction of motion, spatial and temporal frequency, and contrast. The visual stimuli were presented in a stimulus window that was also varied in size. Using the responses to parametric variation in these stimulus variables, we extracted a number of tuning response measures and used them in the cluster analysis. Six main clusters emerged along with some smaller clusters. Additionally, we asked whether parameter distributions from each of the clusters were statistically different. There were clear separations of parameters between some of the clusters, particularly for f1/f0 ratio, direction selectivity, and temporal frequency bandwidth, but other dimensions also showed differences between clusters. Our data suggest that in layer 6 there are multiple parallel circuits that provide information about different aspects of the visual stimulus.SIGNIFICANCE STATEMENT The cortex is multilayered and is involved in many high-level computations. In the current study, we have asked whether there are subpopulations of neurons, clusters, in layer 6 of cortex with different functional tuning properties that provide information about different aspects of the visual image. We identified six major functional clusters within layer 6. These findings show that there is much more complexity to the circuits in cortex than previously demonstrated and open up a new avenue for experimental investigation within layers of other cortical areas and for the elaboration of models of circuit function that incorporate many parallel pathways with different functional roles.


Assuntos
Neurônios/fisiologia , Córtex Visual/citologia , Córtex Visual/fisiologia , Animais , Mapeamento Encefálico , Análise por Conglomerados , Sensibilidades de Contraste , Eletrocardiografia , Potenciais Evocados Visuais , Macaca fascicularis , Masculino , Percepção de Movimento/fisiologia , Orientação , Estimulação Luminosa , Percepção Espacial/fisiologia , Percepção do Tempo/fisiologia
5.
J Neurosci ; 39(49): 9748-9756, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31666355

RESUMO

Most single units recorded from macaque secondary visual cortex (V2) respond with higher firing rates to synthetic texture images containing "naturalistic" higher-order statistics than to spectrally matched "noise" images lacking these statistics. In contrast, few single units in V1 show this property. We explored how the strength and dynamics of response vary across the different layers of visual cortex by recording multiunit (defined as high-frequency power in the local field potential) and gamma-band activity evoked by brief presentations of naturalistic and noise images in V1 and V2 of anesthetized macaque monkeys of both sexes. As previously reported, recordings in V2 showed consistently stronger responses to naturalistic texture than to spectrally matched noise. In contrast to single-unit recordings, V1 multiunit activity showed a preference for images with naturalistic statistics, and in gamma-band activity this preference was comparable across V1 and V2. Sensitivity to naturalistic image structure was strongest in the supragranular and infragranular layers of V1, but weak in granular layers, suggesting that it might reflect feedback from V2. Response timing was consistent with this idea. Visual responses appeared first in V1, followed by V2. Sensitivity to naturalistic texture emerged first in V2, followed by the supragranular and infragranular layers of V1, and finally in the granular layers of V1. Our results demonstrate laminar differences in the encoding of higher-order statistics of natural texture, and suggest that this sensitivity first arises in V2 and is fed back to modulate activity in V1.SIGNIFICANCE STATEMENT The circuit mechanisms responsible for visual representations of intermediate complexity are largely unknown. We used a well validated set of synthetic texture stimuli to probe the temporal and laminar profile of sensitivity to the higher-order statistical structure of natural images. We found that this sensitivity emerges first and most strongly in V2 but soon after in V1. However, sensitivity in V1 is higher in the laminae (extragranular) and recording modalities (local field potential) most likely affected by V2 connections, suggesting a feedback origin. Our results show how sensitivity to naturalistic image structure emerges across time and circuitry in the early visual cortex.


Assuntos
Reconhecimento Visual de Modelos/fisiologia , Córtex Visual/fisiologia , Animais , Eletroencefalografia , Fenômenos Eletrofisiológicos/fisiologia , Potenciais Evocados Visuais/fisiologia , Feminino , Ritmo Gama , Macaca fascicularis , Macaca nemestrina , Masculino , Estimulação Luminosa , Tempo de Reação , Córtex Visual/anatomia & histologia , Campos Visuais , Vias Visuais/fisiologia
6.
Cereb Cortex ; 29(1): 134-149, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29190326

RESUMO

One of the underlying principles of how mammalian circuits are constructed is the relative influence of feedforward to recurrent synaptic drive. It has been dogma in sensory systems that the thalamic feedforward input is relatively weak and that there is a large amplification of the input signal by recurrent feedback. Here we show that in trichromatic primates there is a major feedforward input to layer 4C of primary visual cortex. Using a combination of 3D-electron-microscopy and 3D-confocal imaging of thalamic boutons we found that the average feedforward contribution was about 20% of the total excitatory input in the parvocellular (P) pathway, about 3 times the currently accepted values for primates. In the magnocellular (M) pathway it was around 15%, nearly twice the currently accepted values. New methods showed the total synaptic and cell densities were as much as 150% of currently accepted values. The new estimates of contributions of feedforward synaptic inputs into visual cortex call for a major revision of the design of the canonical cortical circuit.


Assuntos
Tálamo/fisiologia , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Animais , Feminino , Macaca fascicularis , Masculino , Terminações Pré-Sinápticas/fisiologia , Terminações Pré-Sinápticas/ultraestrutura , Primatas , Tálamo/ultraestrutura , Córtex Visual/ultraestrutura , Vias Visuais/ultraestrutura
7.
Cereb Cortex ; 29(5): 1921-1937, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29668858

RESUMO

The Kv3.1b potassium channel subunit is associated with narrow spike widths and fast-spiking properties. In macaque primary visual cortex (V1), subsets of neurons have previously been found to be Kv3.1b-immunoreactive (ir) but not parvalbumin (PV)-ir or not GABA-ir, suggesting that they may be both fast-spiking and excitatory. This population includes Meynert cells, the large layer 5/6 pyramidal neurons that are also labeled by the neurofilament antibody SMI-32. In the present study, triple immunofluorescence labeling and confocal microscopy were used to measure the distribution of Kv3.1b-ir, non-PV-ir, non-GABA-ir neurons across cortical depth in V1, and to determine whether, like the Meynert cells, other Kv3.1b-ir excitatory neurons were also SMI-32-ir pyramidal neurons. We found that Kv3.1b-ir, non-PV-ir, non-GABA-ir neurons were most prevalent in the M pathway-associated layers 4 Cα and 4B. GABAergic neurons accounted for a smaller fraction (11%) of the total neuronal population across layers 1-6 than has previously been reported. Of Kv3.1b-ir neurons, PV expression reliably indicated GABA expression. Kv3.1b-ir, non-PV-ir neurons varied in SMI-32 coimmunoreactivity. The results suggest the existence of a heterogeneous population of excitatory neurons in macaque V1 with the potential for sustained high firing rates, and these neurons were particularly abundant in layers 4B and 4 Cα.


Assuntos
Proteínas de Neurofilamentos/análise , Neurônios/citologia , Parvalbuminas/análise , Canais de Potássio Shaw/análise , Córtex Visual/citologia , Ácido gama-Aminobutírico/análise , Animais , Contagem de Células , Macaca fascicularis , Macaca mulatta , Masculino , Neurônios/metabolismo , Córtex Visual/metabolismo
8.
J Neurosci ; 37(36): 8734-8741, 2017 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-28760867

RESUMO

In amblyopia, abnormal visual experience leads to an extreme form of eye dominance, in which vision through the nondominant eye is degraded. A key aspect of this disorder is perceptual suppression: the image seen by the stronger eye often dominates during binocular viewing, blocking the image of the weaker eye from reaching awareness. Interocular suppression is the focus of ongoing work aimed at understanding and treating amblyopia, yet its physiological basis remains unknown. We measured binocular interactions in visual cortex of anesthetized amblyopic monkeys (female Macaca nemestrina), using 96-channel "Utah" arrays to record from populations of neurons in V1 and V2. In an experiment reported recently (Hallum et al., 2017), we found that reduced excitatory input from the amblyopic eye (AE) revealed a form of balanced binocular suppression that is unaltered in amblyopia. Here, we report on the modulation of the gain of excitatory signals from the AE by signals from its dominant fellow eye (FE). Using a dichoptic masking technique, we found that AE responses to grating stimuli were attenuated by the presentation of a noise mask to the FE, as in a normal control animal. Responses to FE stimuli, by contrast, could not be masked from the AE. We conclude that a weakened ability of the amblyopic eye to modulate cortical response gain creates an imbalance of suppression that favors the dominant eye.SIGNIFICANCE STATEMENT In amblyopia, vision in one eye is impaired as a result of abnormal early visual experience. Behavioral observations in humans with amblyopia suggest that much of their visual loss is due to active suppression of their amblyopic eye. Here we describe experiments in which we studied binocular interactions in macaques with experimentally induced amblyopia. In normal monkeys, the gain of neuronal response to stimulation of one eye is modulated by contrast in the other eye, but in monkeys with amblyopia the balance of gain modulation is altered so that the weaker, amblyopic eye has little effect while the stronger fellow eye has a strong effect. This asymmetric suppression may be a key component of the perceptual losses in amblyopia.


Assuntos
Ambliopia/fisiopatologia , Dominância Ocular , Inibição Neural , Mascaramento Perceptivo , Estimulação Luminosa , Visão Binocular , Córtex Visual/fisiologia , Animais , Feminino , Macaca nemestrina , Rede Nervosa/fisiopatologia
9.
J Neurosci ; 37(34): 8216-8226, 2017 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-28743725

RESUMO

In amblyopia, a visual disorder caused by abnormal visual experience during development, the amblyopic eye (AE) loses visual sensitivity whereas the fellow eye (FE) is largely unaffected. Binocular vision in amblyopes is often disrupted by interocular suppression. We used 96-electrode arrays to record neurons and neuronal groups in areas V1 and V2 of six female macaque monkeys (Macaca nemestrina) made amblyopic by artificial strabismus or anisometropia in early life, as well as two visually normal female controls. To measure suppressive binocular interactions directly, we recorded neuronal responses to dichoptic stimulation. We stimulated both eyes simultaneously with large sinusoidal gratings, controlling their contrast independently with raised-cosine modulators of different orientations and spatial frequencies. We modeled each eye's receptive field at each cortical site using a difference of Gaussian envelopes and derived estimates of the strength of central excitation and surround suppression. We used these estimates to calculate ocular dominance separately for excitation and suppression. Excitatory drive from the FE dominated amblyopic visual cortex, especially in more severe amblyopes, but suppression from both the FE and AEs was prevalent in all animals. This imbalance created strong interocular suppression in deep amblyopes: increasing contrast in the AE decreased responses at binocular cortical sites. These response patterns reveal mechanisms that likely contribute to the interocular suppression that disrupts vision in amblyopes.SIGNIFICANCE STATEMENT Amblyopia is a developmental visual disorder that alters both monocular vision and binocular interaction. Using microelectrode arrays, we examined binocular interaction in primary visual cortex and V2 of six amblyopic macaque monkeys (Macaca nemestrina) and two visually normal controls. By stimulating the eyes dichoptically, we showed that, in amblyopic cortex, the binocular combination of signals is altered. The excitatory influence of the two eyes is imbalanced to a degree that can be predicted from the severity of amblyopia, whereas suppression from both eyes is prevalent in all animals. This altered balance of excitation and suppression reflects mechanisms that may contribute to the interocular perceptual suppression that disrupts vision in amblyopes.


Assuntos
Ambliopia/fisiopatologia , Dominância Ocular/fisiologia , Estimulação Luminosa/métodos , Córtex Visual/fisiopatologia , Campos Visuais/fisiologia , Animais , Feminino , Macaca nemestrina , Microeletrodos , Estrabismo/fisiopatologia
10.
Brain Struct Funct ; 222(7): 3333-3353, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28243763

RESUMO

A new framework for measuring densities of immunolabeled neurons across cortical layers was implemented that combines a confocal microscopy sampling strategy with automated analysis of 3D image stacks. Its utility was demonstrated by quantifying neuronal density in macaque cortical areas V1 and V2. A series of overlapping confocal image stacks were acquired, each spanning from the pial surface to the white matter. DAPI channel images were automatically thresholded, and contiguous regions that included multiple clumped nuclear profiles were split using k-means clustering of image pixels for a set of candidate k values determined based on the clump's area; the most likely candidate segmentation was selected based on criteria that capture expected nuclear profile shape and size. The centroids of putative nuclear profiles estimated from 2D images were then grouped across z planes in an image stack to identify the positions of nuclei in x-y-z. 3D centroids falling outside user-specified exclusion boundaries were deleted, nuclei were classified by the presence or absence of signal in a channel corresponding to an immunolabeled antigen (e.g., the pan-neuronal marker NeuN) at the nuclear centroid location, and the set of classified cells was combined across image stacks to estimate density across cortical depth. The method was validated by comparison with conventional stereological methods. The average neuronal density across cortical layers was 230 × 103 neurons per mm3 in V1 and 130 × 103 neurons per mm3 in V2. The method is accurate, flexible, and general enough to measure densities of neurons of various molecularly identified types.


Assuntos
Córtex Cerebral/citologia , Córtex Cerebral/diagnóstico por imagem , Imageamento Tridimensional/métodos , Microscopia Confocal/métodos , Neurônios/citologia , Animais , Contagem de Células , Núcleo Celular , Técnicas In Vitro , Macaca fascicularis , Masculino , Neurônios/metabolismo , Reconhecimento Automatizado de Padrão , Fosfopiruvato Hidratase/metabolismo
11.
Vision Res ; 114: 56-67, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25637856

RESUMO

Amblyopia is a developmental disorder resulting in poor vision in one eye. The mechanism by which input to the affected eye is prevented from reaching the level of awareness remains poorly understood. We recorded simultaneously from large populations of neurons in the supragranular layers of areas V1 and V2 in 6 macaques that were made amblyopic by rearing with artificial strabismus or anisometropia, and 1 normally reared control. In agreement with previous reports, we found that cortical neuronal signals driven through the amblyopic eyes were reduced, and that cortical neurons were on average more strongly driven by the non-amblyopic than by the amblyopic eyes. We analyzed multiunit recordings using standard population decoding methods, and found that visual signals from the amblyopic eye, while weakened, were not degraded enough to explain the behavioral deficits. Thus additional losses must arise in downstream processing. We tested the idea that under monocular viewing conditions, only signals from neurons dominated by - rather than driven by - the open eye might be used. This reduces the proportion of neuronal signals available from the amblyopic eye, and amplifies the interocular difference observed at the level of single neurons. We conclude that amblyopia might arise in part from degradation in the neuronal signals from the amblyopic eye, and in part from a reduction in the number of signals processed by downstream areas.


Assuntos
Ambliopia/fisiopatologia , Neurônios/fisiologia , Córtex Visual/fisiologia , Animais , Anisometropia/fisiopatologia , Sensibilidades de Contraste/fisiologia , Modelos Animais de Doenças , Dominância Ocular/fisiologia , Eletroencefalografia , Feminino , Fóvea Central/fisiologia , Macaca , Estimulação Luminosa/métodos , Estrabismo/fisiopatologia , Visão Binocular/fisiologia
12.
J Vis ; 12(2)2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22303023

RESUMO

Prior reports demonstrate that simultaneity is judged less precisely in the right visual field (RVF) than in the left visual field (LVF). The present psychophysical study was conducted to provide new information about why and when (i.e., the visual information stage at which) RVF deficits arise in simultaneity judgments. In Experiment 1, participants judged either the simultaneity or the relative spatial frequency of Gabor targets in the right or left hemifield while distractors were randomly absent or present. When attention was not needed to exclude distractors, signal detection theory analyses revealed an RVF simultaneity deficit with an error pattern that implicates low RVF temporal acuity, not excessive RVF neural noise. Adding attentionally demanding distractors introduced a separate, significant RVF simultaneity deficit with error patterns that implicate the inappropriate integration of temporal asynchronies from distractor locations. Neither the distractor-independent RVF acuity deficit nor the distractor-induced RVF excessive spatial integration occurred for spatial frequency discrimination at the same retinal locations. In Experiment 2, a perceptual learning procedure significantly improved RVF simultaneity judgments. The learning was task-specific but generalized to the untrained (left) visual field and to novel retinal locations. This observation implicates the simultaneity decision as the visual information stage that sets the limit on performance.


Assuntos
Atenção/fisiologia , Lateralidade Funcional/fisiologia , Aprendizagem/fisiologia , Percepção Espacial/fisiologia , Campos Visuais/fisiologia , Humanos , Julgamento/fisiologia , Mascaramento Perceptivo/fisiologia , Psicofísica/métodos , Retina/fisiologia
13.
J Vis ; 11(6)2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21602558

RESUMO

We extended the investigation of the oblique effect in two novel ways: from stimulus-driven vision to visual attention and from space to time. Participants fixated the center of briefly flashed displays that contained a temporally varying Gabor stimulus in each of the four peripheral quadrants. Across trial blocks, we manipulated which two of the four peripheral stimuli were to be selected for a simultaneity judgment. Simultaneity judgments were significantly worse for obliquely (diagonally) attended targets than for cardinally (horizontally or vertically) attended targets, despite identical retinal stimulation across all attentional conditions. The impairment in judging the simultaneity of obliquely attended targets occurred between and within lateral hemifields, despite significantly greater temporal acuity for the left hemifield. The oblique effect in simultaneity judgments disappeared when the same targets were presented without temporally varying stimuli at distractor locations-a finding that implicates selective attention. Intriguingly, the oblique effect in excluding stimuli at distractor locations also disappeared when participants viewed the original displays but attended to spatial frequency rather than to simultaneity. These findings raise the possibility of different spatial integration windows when attending to spatial versus temporal features, even when those features are co-presented in space and time.


Assuntos
Atenção/fisiologia , Julgamento/fisiologia , Percepção do Tempo/fisiologia , Anisotropia , Percepção de Distância/fisiologia , Humanos , Estimulação Luminosa/métodos , Percepção Espacial/fisiologia , Campos Visuais , Adulto Jovem
14.
Vision Res ; 49(7): 691-701, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19200437

RESUMO

We examined interactions between and within the left and right visual hemifields using elementary visual tasks. Each trial required identifying a letter at fixation and then either discriminating the orientation of (experiment 1) or detecting (experiment 2) peripheral Gabor targets. On half the trials Gabor distracters were presented between the Gabor targets, and were either restricted to one lateral hemifield (unilateral condition) or presented across the left and right hemifields (bilateral condition). Orientation discrimination and detection each exhibited bilateral superiority only when distracters were present. The results confirm bilateral superiority in attentional selection, even on these most elementary visual tasks.


Assuntos
Atenção/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Discriminação Psicológica/fisiologia , Fixação Ocular/fisiologia , Humanos , Orientação/fisiologia , Estimulação Luminosa/métodos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...